Paste your Bing Webmaster Tools verification code here

Problem:

High speed pulsation, usually above 35mph, occurring shortly after brake job or tire service is performed.

Cause 1:

One or more of the rotors were installed with excessive runout. Generic specification being used by domestic OEMs is .002”. Excessive runout causes disc thickness variation (DTV) over time. The average for most vehicles is 3,000 to 6,000 miles. This number can vary up or down based on the variables involved.

Cause 2:

Insufficient clearance between inboard and outboard brake pads and rotor’s friction surface. The closer the brake pads are to the rotor’s friction surface the smaller the amount of runout needed to produce disc thickness variation (DTV).

Solution 1:

Rotors must be installed with runout less than vehicle’s specifications in order to eliminate runout induced DTV. There are 2 options to perform this.

Option 1: Use an on-the-car lathe to machine the rotors true to the hub. Make sure to index the rotor to the hub if removing it after the machining process. Make sure to properly torque the wheels using the method described in step 6 below.

NOTE: When performing on-the-car machining on vehicles equipped with ABS make sure none of the machining chips accumulate on the magnetic sensor tip. This could trigger false activation of the ABS or fault codes. See Figure 22.1

Figure 22.1 Lathe Chips

Option 2: If using a bench lathe to perform off the vehicle machining follow these steps:

  1. If resurfacing the rotor(s) use proper machining techniques and make sure the lathe is in good working condition. On hubless rotors make sure to clean the mating surfaces with an appropriate tool. Scratch cut all rotors to ensure accurate setup.
  2. Clean the rotor before installing on vehicle to prevent machining dust from contaminating brake pads.
  3. Before installing hubless rotors, clean the hub mating surface using an appropriate tool(s). Failure to properly clean this surface can prevent achieving the proper installed runout.
  4. When installing new or machined hubless rotors the installed runout should be checked. Using spacers on the studs tighten all lugs to the proper torque using the correct sequence. Measure runout. If runout is not less than manufacturer’s specification index the rotor on the hub to achieve the lowest amount of lateral runout.
  5. Before indexing mark the high spot on the rotor and hub using a magic marker or paint stick as shown in Figure 22.2. Indexing involves removing the rotor and rotating it one or two lugs and reinstalling. Repeat this until the installed runout is below specification. If runout is out of specifications and does not change as the rotor is rotated check to see if the high spot moves with the rotor or stays with the hub. This will identify the cause of the runout.

    Figure 22.2 Indexing

  6. Properly torque the wheel lugs using either a hand torque wrench or torque stick sockets. When torquing wheels use a step torque process. To step torque the lugs tighten all lugs to half the normal torque using proper sequence and then fully torque lugs using same process. Make sure your impact has been calibrated before using torque sticks.

Solution 2:

Look closely at Figures 22.3 & 22.4. Both rotors shown have the same runout but what they don’t have is the same gap between the pads and rotor. The gap between the pads and rotors in Figure 22.3 is much smaller than that of Figure 22.4. The smaller the gap the more sensitive the vehicle will be to runout induced DTV. Remember the wear of the high and low spots occurs during both brake apply and release. If something in the caliper assembly is preventing a full or complete release of either the outboard or inboard pad that wheel will be more susceptible to this problem. Improper release of either pad could make even those rotors at or below .002” prone to this problem.

Figure 22.3 Small Pad to Rotor Gap

Figure 22.4 Large Pad to Rotor Gap

Effective inboard pad release will be effected by two types of conditions. The first of these involves how well the piston releases. A piston that does not return as far as it should reduces the gap between the inboard pad and rotor. Mileage, brake fluid condition, dust boot seal integrity all can impact the piston’s ability to release properly. The second condition that can effect the release of the inboard pad involves how easy the pad can move in relationship to the caliper mounting bracket, knuckle or slide rails. If the inboard pad binds then complete release will not take place.

Outboard pad release can be impacted by two categories of failures as well. The most common of these is the slide hardware. If the caliper housing is not free to move on its mounting hardware then outboard pad release will be effected. The other category is the same as for inboard pad release, that is anything causing the outboard pad to bind where it contacts the bracket, knuckle or slide rails.

Nothing new about what impacts inboard or outboard pad wear but understanding its influence on the issue of runout induced DTV is a fairly new concept. The moral of the story is short cutting quality brake work impacts more than just pad life. The old “pad slap” has more chances to come back and haunt you than what you might have considered. Remember just because the caliper applies and releases doesn’t guarantee its doing it as effectively as it should. Look at the big picture when doing your brake inspection. A few more minutes covering the details up front will pay big dividends in the long run. A saying I like to use sums it all up – “I would rather be paid today for what is wrong with the vehicle than have to give it away tomorrow”.

More Info: The fact that excessive runout is the leading cause of reoccurring pulsation should not be anything new. The principal is easy, too much runout on fixed bearing vehicles causes the high and low spot of the rotor to scrape against the pads. This scraping occurs during both non-braking and braking. Over time the high and low spots are worn thinner than the other portions of the rotor. This difference in thickness is known as disc thickness variation or DTV (See Figure 22.5). It is also called parallelism. The two friction surfaces of a rotor are supposed to be parallel to one another to within a certain tolerance. The average value for this specification is .0005”. As little as 5 ten thousands of an inch or another way to say it would be ó of one thousandth of an inch tolerance is all that is allowed.

Figure 22.5 Disc Thickness Variation (DTV) Views

If DTV is in excess of acceptable limits the thin spots pass between the pads during brake apply causing the caliper piston must move out to take up the gap. The thick portions of the rotor push the piston back. The in and out movement of the piston causes the pedal to pulsate especially at speeds above 35mph. What has been stressed is the importance of getting the rotor’s installed runout to acceptable levels. Most domestic OEMs are agreeing that this amount is .002” or less. While this is definitely the most important aspect of curing the reoccurring pulsation it is not the only thing to consider. There are other factors that will contribute to the vehicle’s sensitivity to this.

Bonus Tip: 

Discard the myth that reoccurring pulsation complaints are caused by warped rotors due to overheating.

Paste your AdWords Remarketing code here